Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This work presents SPARC (Spatio-Temporal Adaptive Resource Control), a novel approach for multi-site spectrum management in NextG cellular networks. SPARC addresses the challenge of limited licensed spectrum in dynamic environments. We leverage the O-RAN architecture to develop a multi-timescale RAN Intelligent Controller (RIC) framework, featuring an xApp for near-real-time interference detection and localization, and a MApp for real-time intelligent resource allocation. By utilizing base stations as spectrum sensors, SPARC enables efficient and fine-grained dynamic resource allocation across multiple sites, enhancing signal-to-noise ratio (SNR) by up to 7dB, spectral efficiency by up to 15%, and overall system throughput by up to 20%. Comprehensive evaluations, including emulations and over-the-air experiments, demonstrate the significant performance gains achieved through SPARC, showcasing it as a promising solution for optimizing resource efficiency and network performance in NextG cellular networks.more » « less
-
This work presents SPARC (Spatio-Temporal Adaptive Resource Control), a novel approach for multi-site spectrum management in NextG cellular networks. SPARC addresses the challenge of limited licensed spectrum in dynamic environments. We leverage the O-RAN architecture to develop a multi-timescale RAN Intelligent Controller (RIC) framework, featuring an xApp for near-real-time interference detection and localization, and a xApp for real-time intelligent resource allocation. By utilizing base stations as spectrum sensors, SPARC enables efficient and fine-grained dynamic resource allocation across multiple sites, enhancing signal-to-noise ratio (SNR) by up to 7dB, spectral efficiency by up to 15%, and overall system throughput by up to 20%. Comprehensive evaluations, including emulations and over-the-air experiments, demonstrate the significant performance gains achieved through SPARC, showcasing it as a promising solution for optimizing resource efficiency and network performance in NextG cellular networks.more » « lessFree, publicly-accessible full text available December 1, 2025
An official website of the United States government

Full Text Available